加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSS

您的位置:首页 > 社会 > 医疗卫生 > 医卫综合 医卫综合

扫码关注

基于网络药理学研究延胡索中活性成分治疗冠心病的作用机制

作者:李颖,庄震坤,陈宏昱,温妙愉,蔡景太,宋晓丹,程红 来源:《卫生健康发展研究》(第二期) 责任编辑:yangxu1985 2023-06-27 人已围观

 

参考文献

[1] N. D. Wong, Epidemiological studies of CHD and the evolution of preventive cardiology[J]. Nature reviews Cardiology, 2014, 11(5): 276-289.
[2] P. Joseph, D. Leong, M. McKee, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors[J]. Circulation research, 2017,121(6): 677-694.
[3] W. Herrington, B. Lacey, P. Sherliker, et al. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease[J]. Circulation research, 2016, 118(4): 535-546.
[4] M. Valgimigli, H. Bueno, R. A. Byrne, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-ThoracicSurgery (EACTS)[J]. European heart journal, 2018, 39(3): 213-260.
[5] S. C. Smith, Jr., E. J. Benjamin, R. O. Bonow, et al. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: A guideline from the American Heart Association and American College of Cardiology Foundation[J]. Circulation, 2011, 124(2): 2458-2473.
[6] R. Collins, C. Reith, J. Emberson, et al. Interpretation of the evidence for the efficacy and safety of statin therapy[J]. The Lancet, 2016, 388(10059): 2532-2561.
[7] P. Tian, Convergence: Where West meets East[J]. Nature, 2011, 480(7378): S84-S86.
[8] C. P. Committee, Chinese Pharmacopoeia, China medical science and technology press, Beijing, China, 2015.
[9] 蒋跃绒,谢元华,张京春,等. 陈可冀治疗心血管疾病血瘀证用药规律数据挖掘[J]. 中医杂志,2015,56(5):376-380.
[10] 任毅,陈志强,张敏州,等. 当代名老中医治疗冠心病用药规律的聚类分析[J]. 中国中西医结合杂志,2016,36(4):411-414.
[11] 魏建梁,陈兴娟,杨传华. 张文高教授益气温阳活血方治疗冠心病心绞痛述要[J]. 中华中医药杂志,2015,30(2):443.
[12] 谢伟,康立源,王硕,等. 张伯礼治疗冠心病经验[J]. 中医杂志. 2011(18).
[13] S. Li, B. Zhang. Traditional Chinese medicine network pharmacology: Theory, methodology,and application[J]. Chinese journal of natural medicines, 2013, 11(2): 110-120.
[14] D. C. Hao, P. G. Xiao. Network pharmacology: A Rosetta Stone for traditional Chinese medicine[J]. Drug development research, 2014, 75(5): 299-312.
[15] B. Boezio, K. Audouze, P. Ducrot, et al. Network-based Approaches in Pharmacology[J].Molecular informatics, 2017,36(10):10. 1002/minf. 201700048.
[16] J. Ru, P. Li, J. Wang, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of cheminformatics, 2014(6): 13-13.
[17] D. Gan, X. Xu, D. Chen, et al. Network Pharmacology-Based Pharmacological Mechanism of the Chinese Medicine Rhizoma drynariae Against Osteoporosis[J].Medical science monitor : International medical journal of experimental and clinical research, 2019(25): 5700-5716.
[18] G. Yu, W. Wang, X. Wang, et al. Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis[J]. BMC complementary and alternative medicine, 2018, 18(1): 292-292.
[19] G. Stelzer, N. Rosen, I. Plaschkes, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses[J]. Current protocols in bioinformatics, 2016(54): 1. 30. 31-31. 30. 33.
[20] J. S. Amberger, A. Hamosh. Searching Online Mendelian Inheritance in Man (OMIM):A Knowledgebase of Human Genes and Genetic Phenotypes[J]. Current protocols in bioinformatics, 2017(58): 1. 2. 1-1. 2. 12.
[21] B. Hur, D. Kang, S. Lee, et al. Venn-diaNet : Venn diagram based network propagation analysis framework for comparing multiple biological experiments[J]. BMC bioinformatics, 2019, 20(23): 667-667.
[22] G. Su, J. H. Morris, B. Demchak, et al. Biological network exploration with Cytoscape 3[J]. Current protocols in bioinformatics, 2014(47): 8. 13. 11-18. 13. 24.
[23] D. Szklarczyk, J. H. Morris, H. Cook, et al. The STRING database in 2017: Qualitycontrolled protein-protein association networks, made broadly accessible[J]. Nucleic acids research, 2017, 45(D1): D362-D368.
[24] A. Athanasios, V. Charalampos, T. Vasileios, et al. Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery[J]. Current drug metabolism, 2017, 18(1): 5-10.
[25] H. Mi, A. Muruganujan, D. Ebert, et al. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools[J]. Nucleic acids research, 2019: 47(D1): D419-D426.
[26] M. Kanehisa. Toward understanding the origin and evolution of cellular organisms[J]. Protein science : A publication of the Protein Society, 2019: 28(11): 1947-1951.
[27] G. Yu, L. -G. Wang, Y. Han, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters[J]. Omics : A journal of integrative biology, 2012: 16(5): 284-287.
[28] G. Yu, L. -G. Wang, G. -R. Yan, et al. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis[J]. Bioinformatics, 2015, 31(4): 608-609.
[29] L. Cao, Y. Chen, M. Zhang, et al. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis[J]. PeerJ, 2018(6): e5180-e5180.
[30] H. Feng, Z. -Y. Gu, Q. Li, et al. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis[J]. Journal of ovarian research, 2019, 12(1):35-35.
[31] Y. Li, J. Yao, C. Han, et al. Quercetin, Inflammation and Immunity[J]. Nutrients, 2016,8(3): 167-167.
[32] R. V. Patel, B. M. Mistry, S. K. Shinde, et al. Therapeutic potential of quercetin as a cardiovascular agent[J]. European journal of medicinal chemistry, 2018, 155: 889-904.
[33] W. J. Oh, M. Endale, S. -C. Park, et al. Dual Roles of Quercetin in Platelets: Phosphoinositide-3-Kinase and MAP Kinases Inhibition, and cAMP-Dependent Vasodilator-Stimulated Phosphoprotein Stimulation[J]. Evidence-based complementary and alternative medicine : eCAM, 2012: 485262-485262.
[34] G. Carullo, A. R. Cappello, L. Frattaruolo, et al. Quercetin and derivatives: useful tools in inflammation and pain management[J]. Future medicinal chemistry, 2017, 9(1): 79-93.
[35] S. Feng, Z. Dai, A. B. Liu, et al. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet[J]. Biochimica et biophysica acta-Molecular and cell biology of lipids, 2018, 1863(10): 1274-1284.
[36] A. K. Batta, G. Xu, A. Honda, et al. Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat[J]. Metabolism: Clinical and experimental, 2006, 55(3): 292-299.
[37] P. Tangsucharit, S. Takatori, Y. Zamami, et al. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries[J]. Journal of pharmacological sciences, 2016, 130(1): 24-32.
[38] J. Yang, J. A. Williams, D. I. Yule, et al. Mutation of carboxyl-terminal threonine residues in human m3 muscarinic acetylcholine receptor modulates the extent of sequestration and desensitization[J]. Molecular pharmacology, 1995, 48(3): 477-485.
[39] A. C. Boese, S. C. Kim, K. -J. Yin, et al. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease[J]. American journal of physiology-Heart and circulatory physiology, 2017, 313(3): H524-H545.
[40] C. -K. Huang, S. O. Lee, E. Chang, et al. Androgen receptor (AR) in cardiovascular diseases[J]. The Journal of endocrinology, 2016, 229(1): R1-R16.
[41] M. D’Amelio, V. Cavallucci, F. Cecconi. Neuronal caspase-3 signaling: Not only cell death[J]. Cell death and differentiation, 2010, 17(7): 1104-1114.
[42] S. P. Didion. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature[J]. International journal of molecular sciences, 2017, 18(12): 2563.
[43] L. Ziegler, A. Gajulapuri, P. Frumento, et al. Interleukin 6 trans-signalling and risk of future cardiovascular events[J]. Cardiovascular research, 2019, 115(1): 213-221.
[44] L. P. Grazette, W. Boecker, T. Matsui, et al. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: Implications for herceptin-induced cardiomyopathy[J]. Journal of the American College of Cardiology, 2004, 44(11): 2231-2238.
[45] N. L. Spector, Y. Yarden, B. Smith, et al. Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(25): 10607-10612.
[46] Y. -C. Xu, X. -L. Jing, Y. Ke, et al. Expression of brain natriuretic peptide and c-fos gene in rat after acute myocardial ischemia and its medicolegal significance[J]. Fa yi xue za zhi, 2008, 24(1): 1-4.
[47] T. B. González-Castro, C. A. Tovilla-Zárate, I. E. Juárez-Rojop, et al. PON2 and PPARG polymorphisms as biomarkers of risk for coronary heart disease[J]. Biomarkers in medicine, 2018, 12(3): 287-297.
[48] W. -M. Wei, X. -Y. Wu, S. -T. Li, et al. PPARG gene C161T CT/TT associated with lower blood lipid levels and ischemic stroke from large-artery atherosclerosis in a Han population in Guangdong[J]. Neurological research, 2016, 38(7): 620-624.
[49] A. V, P. G. Nayar, R. Murugesan, et al. A systems biology and proteomics-based approach identifies SRC and VEGFA as biomarkers in risk factor mediated coronary heart disease[J]. Molecular bioSystems, 2016, 12(8): 2594-2604.
[50] X. Chen, F. Niroomand, Z. Liu, et al. Expression of nitric oxide related enzymes in coronary heart disease[J]. Basic research in cardiology, 2006, 101(4): 346-353.
[51] M. Fritsch, S. D. Günther, R. Schwarzer, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis[J]. Nature, 2019, 575(7784): 683-687.
[52] G. Stone, A. Choi, O. Meritxell, et al. Sex differences in gene expression in response to ischemia in the human left ventricular myocardium[J]. Human molecular genetics, 2019,28(10): 1682-1693.
[53] M. Z. Cilek, S. Hirohata, O. Faruk Hatipoglu, et al. AHR, a novel acute hypoxiaresponse sequence, drives reporter gene expression under hypoxia in vitro and in vivo[J]. Cell biology international, 2011, 35(1): 1-8.
[54] H. Kumar, D. -K. Choi. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?[J]. Mediators of inflammation, 2015: 584758-584758.
[55] K. Wang, H. Shen, P. Gan, et al. Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development[J]. BMC developmental biology, 2019, 19(1): 5-5.
[56] J. -M. Hwang, Y. -J. Weng, J. A. Lin, et al. Hypoxia-induced compensatory effect as related to Shh and HIF-1alpha in ischemia embryo rat heart[J]. Molecular and cellular biochemistry, 2008, 311(1-2): 179-187.
[57] Y. Wang, J. Liu, Q. Kong, et al. Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction[J]. Cardiovascular research, 2019, 115(1): 154-167.
[58] H. Li, K. Sun, R. Zhao, et al. Inflammatory biomarkers of coronary heart disease[J].Frontiers in bioscience (Scholar edition), 2018(10): 185-196.
[59] N. Baeyens, C. Bandyopadhyay, B. G. Coon, et al. Endothelial fluid shear stress sensing in vascular health and disease[J]. The Journal of clinical investigation, 2016, 126(3): 821-828.
[60] N. Baeyens. Fluid shear stress sensing in vascular homeostasis and remodeling:Towards the development of innovative pharmacological approaches to treat vascular dysfunction[J]. Biochemical pharmacology, 2018, 158: 185-191.
[61] N. Amini-Shirazi, A. Hoseini, A. Ranjbar, et al. Inhibition of tumor necrosis factor and nitrosative/oxidative stresses by Ziziphora clinopoides (Kahlioti); a molecular mechanism of protection against dextran sodium sulfate-induced colitis in mice[J].Toxicology mechanisms and methods, 2009, 19(2): 183-189.
[62] Y. Kageyama, M. Takahashi, T. Ichikawa, et al. Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis[J].Clinical and experimental rheumatology, 2008, 26(1): 73-80.
[63] Y. Sun, W. -Z. Liu, T. Liu, et al. Signaling pathway of MAPK/ERK in cell proliferation,differentiation, migration, senescence and apoptosis[J]. Journal of receptor and signaltransduction research, 2015, 35(6): 600-604.
[64] F. Damilano, A. Perino, E. Hirsch. PI3K kinase and scaffold functions in heart[J]. Annals of the New York Academy of Sciences, 2010, 1188: 39-45.
[65] X. Hu, C. Xu, X. Zhou, et al. PI3K/Akt signaling pathway involved in cardioprotection of preconditioning with high mobility group box 1 protein during myocardial ischemia and reperfusion[J]. International journal of cardiology, 2011, 150(2): 222-223.


很赞哦! ( )

评论

0

搜一搜